磨損專用HD諧波減速機FB-14-88-2-GR磨損是零部件失效的一種基本類型。通常意義上來講,磨損是指零部件幾何尺寸(體積)變小。 零部件失去原有設計所規(guī)定的功能稱為失效。失效包括完全喪失原定功能;功能降低和有嚴重損傷或隱患,繼續(xù)使用會失去可靠性及安全性和安全性。
[wear and tear] 機器或別的物體因為摩擦或使用而造成的損耗。也叫"磨耗"
這臺機器基本上沒有什么磨損
磨損專用HD諧波減速機FB-14-88-2-GR磨擦損耗。
唐 劉叉 《偶書》詩:"野夫怒見不平處,磨損胸中萬古刀。" 谷峪 《蘿北半月》:"今年拖拉機給我們耕的地,光耗油和機件磨損計算下來就賠百分之五十的賬。"《花城》1981年第2期:"有一天在省建委開會,他半開玩笑地對主任說:'機器全磨損了,上油也不行了,另請高明吧損是零部件失效的一種基本類型。通常意義上來講,磨損是指零部件幾何尺寸(體積)變小。
零部件失去原有設計所規(guī)定的功能稱為失效。失效包括完全喪失原定功能;功能降低和有嚴重損傷或隱患,繼續(xù)使用會失去可靠性及安全性。
磨損專用HD諧波減速機FB-14-88-2-GR按照表面破壞機理特征,磨損可以分為磨粒磨損、粘著磨損、表面疲勞磨損、腐蝕磨損和微動磨損等。前三種是磨損的基本類型,后兩種只在某些特定條件下才會發(fā)生。
磨粒磨損:物體表面與硬質顆粒或硬質凸出物(包括硬金屬)相互摩擦引起表面材料損失。
粘著磨損:摩擦副相對運動時,由于固相焊合作用的結果,造成接觸面金屬損耗。
表面疲勞磨損:兩接觸表面在交變接觸壓應力的作用下,材料表面因疲勞而產生物質損失。
腐蝕磨損:零件表面在摩擦的過程中,表面金屬與周圍介質發(fā)生化學或電化學反應,因而出現(xiàn)的物質損失。
微動磨損:兩接觸表面間沒有宏觀相對運動,但在外界變動負荷影響下,有小振幅的相對振動(小于100μm),此時接觸表面間產生大量的微小氧化物磨損粉末,因此造成的磨損稱為微動磨損
為了反映零件的磨損,常常需要用一些參量來表征材料的磨損性能。常用的參量有以下幾種:
磨損專用HD諧波減速機FB-14-88-2-GR(1)磨損量 由于磨損引起的材料損失量稱為磨損量,它可通過測量長度、體積或質量的變化而得到,并相應稱它們?yōu)榫€磨損量、體積磨損量和質量磨損量。
(2)磨損率 以單位時間內材料的磨損量表示,即磨損率I=dV /dt (V為磨損量,t為時間)。
(3)磨損度 以單位滑移距離內材料的磨損量來表示,即磨損度E=dV/dL (L為滑移距離)。
(4)耐磨性 指材料抵抗磨損的性能,它以規(guī)定摩擦條件下的磨損率或磨損度的倒數(shù)來表示,即耐磨性=dt/dV或dL/dV。
(5)相對耐磨性 指在同樣條件下,兩種材料(通常其中一種是Pb-Sn合金標準試樣)的耐磨性之比值,即相對耐磨性εw=ε試樣/ε標樣。
磨損專用HD諧波減速機FB-14-88-2-GR機械零件的磨損失效常經歷一定的磨損階段。圖1a所示為典型的磨損過程曲線,圖1b表示磨損過程曲線的斜率,即磨損率曲線。根據(jù)磨損率曲線,可以將磨損失效過程分為三個階段。
(1)跑合磨損階段(圖中0a段) 新的摩擦副在運行初期,由于對偶表面的表面粗糙度值較大,實際接觸面積較小,接觸點數(shù)少而多數(shù)接觸點的面積又較大,接觸點粘著嚴重,因此磨損率較大。但隨著跑合的進行,表面微峰峰頂逐漸磨去,表面粗糙度值降低,實際接觸面積增大,接觸點數(shù)增多,磨損率降低,為穩(wěn)定磨損階段創(chuàng)造了條件。為了避免跑合磨損階段損壞摩擦副,因此跑合磨損階段多采取在空車或低負荷下進行;為了縮短跑合時間,也可采用含添加劑和固體潤滑劑的潤滑材料,在一定負荷和較高速度下進行跑合。跑合結束后,應進行清洗并換上新的潤滑材料。
(2)穩(wěn)定磨損階段(圖中ab段) 這一階段磨損緩慢且穩(wěn)定,磨損率保持基本不變,屬正常工作階段,圖中相應的橫坐標就是摩擦副的耐磨壽命。
(3)劇烈磨損階段(圖中bc段) 經過長時間的穩(wěn)定磨損后,由于摩擦副對偶表面間的間隙和表面形貌的改變以及表層的疲勞,其磨損率急劇增大,使機械效率下降、精度喪失、產生異常振動和噪聲、摩擦副溫度迅速升高,最終導致摩擦副完全失效。
有時也會出現(xiàn)下列情況:
(1)在跑合磨損階段與穩(wěn)定磨損階段無明顯磨損。當表層達到疲勞極限后,就產生劇烈磨損,滾動軸承多屬于這種類型。
(2)跑合磨損階段磨損較快,但當轉入穩(wěn)定磨損階段后,在很長的一段時間內磨損甚微,無明顯的劇烈磨損階段。一般特硬材料的磨損(如刀具等)就屬于這一類。
(3)某些摩擦副的磨損,從一開始就存在著逐漸加速磨損的現(xiàn)象,如閥門的磨損就屬于這種情況。
3、表面疲勞磨損
摩擦副兩對偶表面作滾動或滾滑復合運動時,由于交變接觸應力的作用,使表面材料疲勞斷裂而形成點蝕或剝落的現(xiàn)象,稱為表面疲勞磨損(或接觸疲勞磨損)。
如前所述,粘著磨損和磨粒磨損,都起因于固體表面間的直接接觸。如果摩擦副兩對偶表面被一層連續(xù)不斷的潤滑膜隔開,而且中間沒有磨粒存在時,上述兩種磨損則不會發(fā)生。但對于表面疲勞磨損來說,即使有良好的潤滑條件,磨損仍可能發(fā)生。因此,可以說這種磨損一般是難以避免的。
表面疲勞磨損形成的原因,按照疲勞裂紋產生的位置,目前存在兩種解釋。
摩擦副兩對偶表面在接觸過程中,由于受到法向應力和切應力的反復作用,必然引起表層材料塑性變形而導致表面硬化,最后在表面的應力集中源(如切削痕、碰傷、腐蝕或其它磨損的等)出現(xiàn)初始裂紋,如圖1所示,該裂紋源以與滾動方向小于45°的傾角由表向內擴伸。當潤滑油楔入裂紋中后,若滾動體的運動方向與裂紋方向一致,當接觸到裂口時,裂口封住,裂紋中的潤滑油則被堵塞在裂紋內,因滾動使裂紋內的潤滑油產生很大壓力將裂紋擴展,經交變應力重復作用,裂紋發(fā)展到一定深度后則成為懸臂梁形狀,在油壓作用下材料從根部斷裂而在表面形成扇形的疲勞坑,造成表面疲勞磨損,這種磨損稱為點蝕。點蝕主要發(fā)生在高質量鋼材以滑動為主的摩擦副中,這種磨損的裂紋形成時間很長,但擴展速度十分迅速。
兩點(或線)接觸的摩擦副對偶表面,壓應力發(fā)生在表面,切應力發(fā)生在距表面0. 786a (a是點或線接觸區(qū)寬度的一半)處。在切應力處,塑性變形最劇烈,且在交變應力作用下反復變形,使該處材料局部弱化而出現(xiàn)裂紋。裂紋首先順滾動方向平行于表面擴展,然后分叉延伸到表面,使表面材料呈片狀剝落而形成淺凹坑,造成表面疲勞磨損,這種磨損常稱為鱗剝。若在表層下切應力處附近有非塑性夾雜物等缺陷,造成應力集中,則極易早期產生裂紋而引起疲勞磨損,這種表面疲勞磨損主要發(fā)生在以滾動為主的一般質量的鋼制摩擦副中。這種磨損的裂紋形成時間較短,但裂紋擴展速度較慢。這種從表層下產生裂紋的疲勞磨損通常是滾動軸承的主要破壞形式。
滾動接觸疲勞磨損要經過一定的應力循環(huán)次數(shù)之后才發(fā)生明顯的磨損,并很快形成較大的磨屑,使摩擦副對偶表面出現(xiàn)凹坑而喪失其工作能力;而在此之前磨損極微,可以不計。這與粘著磨損和磨粒磨損從一開始就發(fā)生磨損并逐漸增大的情況完全不同。因此,對滾動接觸疲勞磨損來說,磨損度或磨損率似乎不是一個很有用的參數(shù),更有意義的是表面出現(xiàn)凹坑前的應力循環(huán)次數(shù)。
鋼中的非塑性夾雜物等冶金缺陷,對疲勞磨損有嚴重的影響。如鋼中的氮化物、氧化物、硅酸鹽等帶棱角的質點,在受力過程中,其變形不能與基體協(xié)調而形成空隙,構成應力集中源,在交變應力作用下出現(xiàn)裂紋并擴展,最后導致疲勞磨損早期出現(xiàn)。因此,選擇含有害夾雜物少的鋼(如軸承常用凈化鋼),對提高摩擦副抗疲勞磨損能力有著重要意義。在某些情況下,鑄鐵的抗疲勞磨損能力優(yōu)于鋼,這是因為鋼中微裂紋受摩擦力的影響具有一定方向性,且也容易滲入油而擴展;而鑄鐵基體組織中含有石墨,裂紋沿石墨發(fā)展且沒有一定方向性,潤滑油不易滲入裂紋。
一般情況下,材料抗疲勞磨損能力隨表面硬度的增加而增強,而表面硬度一旦越過一定值,則情況相反。
鋼的芯部硬度對抗疲勞磨損有一定影響,在外載荷一定的條件下,芯部硬度越高,產生疲勞裂紋的危險性就越小。因此,對于滲碳鋼應合理地提高其芯部硬度,但也不能無限地提高,否則韌性太低也容易產生裂紋。此外,鋼的硬化層厚度也對抗疲勞磨損能力有影響,硬化層太薄時,疲勞裂紋將出現(xiàn)在硬化層與基體的連接處而易形成表面剝落。因此,選擇硬化層厚度時,應使疲勞裂紋產生在硬化層內,以提高抗疲勞磨損能力。
齒輪副的硬度選配,一般要求大齒輪硬度低于小齒輪,這樣有利于跑合,使接觸應力分布均勻和對大齒輪齒面產生冷作硬化作用,從而有效地提高齒輪副壽命。
在接觸應力一定的條件下,表面粗糙度值越小,抗疲勞磨損能力越高;當表面粗糙度值小到一定值后,對抗疲勞磨損能力的影響減小。如滾動軸承,當表面粗糙度值為Ra0.32mm時,其軸承壽命比Ra0.63mm時高2~3倍,Ra0.16mm比Ra0.32mm高1倍,Ra0.08mm比Ra0.16mm高0.4倍,Ra0.08mm以下時,其變化對疲勞磨損影響甚微。如果觸應力太大,則無論表面粗糙度值多么小,其抗疲勞磨損能力都低。此外,若零件表面硬度越高,其表面粗糙度值也就應越小,否則會降低抗疲勞磨損能力。
接觸表面的摩擦力對抗疲勞磨損有著重要的影響。通常,純滾動的摩擦力只有法向載荷的1%~2%,而引入滑動以后,摩擦力可增加到法向載荷的10%甚至更大。摩擦力促進接觸疲勞過程的原因是:摩擦力作用使切應力位置趨于表面,增加了裂紋產生的可能性。此外,摩擦力所引起的拉應力會促使裂紋擴展加速。